
Development of Standards for Sinhala Computing

Gihan Dias Aruni Goonetilleke ICT Agency

Introduction

- Most computer use in Sri Lanka is in English
- Most people in Sri Lanka prefer to use Sinhala or Tamil
- For people to benefit from the IT revolution, they should be able to use computers in their own language
 - not only computers but mobile phones, games, and other electronic devices

Multilingual computing

- Computers originated in English speaking countries
- Initially, they all ran in English
- Countries such as Japan, Thailand introduced local character sets
 - were standardised and became common
- Did not happen in Sri Lanka
 - why?

What is required for local language support?

Character Encoding

- how letters and words are encoded in a system
- required for document portability
- not limited to a specific font
- not limited to a specific appliaction (e.g. MS Word)

Fonts

- how text is represented on a screen or printer
- many ways of writing a letter
 - e.g.: g g g g g g
- scope for artistic expression

Local Language Support

- Text input
 - from keyboard, pen, voice recognition, etc.
 - keyboard layout
 - key sequences
- Application support
 - each application must have local language menus, error messages, help screens, etc.
- Utilities
 - spelling checkers

Current Sinhala Technology

- Fonts
- Packages
 - Bundle a font with applications (e.g., a word processor)

Features of Current Systems:

- 8-bit Character Set
- Character codes based on keyboard layout
 - e.g. ක may be represented by the same code as k

Issues with existing packages

- Lack of needed letters
- Problems with pili
- Collation and Searching
- Lack of a Standard causes problems with
 - Transferrring Documents
 - e-mail
 - Web
 - Databases

Review of Sandardisation Work

- CANLIT defined Sinhala alphabet
- SLASCII Character Encoding 1996
 - SLS1134
- Introduction of Sinhala into Unicode 1997
- Revision of SLS1134 to conform with Unicode 2001
- CINTEC Sinhala Fonts committee 2003
 - To understand why Standard Sinhala was not being used, and take remedial measures

Unicode

- Standard method to represent many languages
- Supported by most modern computer systems
- Tamil has been included for some time

International standard for language representation

 Although Sinhala has been included in Unicode, adoption has been slow

Why?

- A lack of awareness of Unicode
- Incompatibility with legacy systems
- Unicode's complexity
- Lack of support in MS-Windows (till now)

Work done by CINTEC, SLSI and ICTA

- Encoding Standards
- Fonts
- Keyboard
- Dissemination
 - Sinhala Language pack for Windows XP
 - Joint effort of ICTA, Microsoft, ANCL, Microimage and others

Encoding

- Must be able to represent all contemporary and classical Sinhala text
- Should facilitate collation and searching
- Should be efficient

Encoding methods

- One code per symbol
 - e.g. ක = 100, ා = 150, ා = 152
- One code per letter
 - කො = 54
- Unicode uses one code for each consonant and another for each vowel modifier
 - e.g., කෙ is represented by two codes, ක + ෙ

Shortcomings of Unicode

- Lack of encodings for bandi akuru such as ක්ෂ,
- Lack of encodings for the yansaya, rakaransaya and rephaya,
- Lack of guidance on the use of multiple vowel modifiers and
- Lack of guidance on the encoding of non-standard letters, such as කු, රු and ළු.

Conjunct Letters (බැඳි අකුරු)

- Shorthand for writing a pure consonant followed by another letter
 - e.g., න්ද = ඤ
- use the Unicode zero width joiner (ZWJ) to indicate a conjunct
 - e.g., න + ් + ද = න්ද
 - න + ් + zwj + ද = නු

Yansaya and Rakaransaya

These Symbols are not included in Unicode

- Why?
 - They are not Sinhala letters
 - are a shorthand for a ය or a ර following a pure consonant
- How are they represented?
 - e.g., ත + ් + zwj + ර = තු

Non-Standard Letters

- Pa-pili
 - Use the same code for all pa-pili e.g. කු
- - Represent as ෮ + ු
 - 6 + ₁ = d
- %
 - Represent as ℰ + ೖ.

Fonts

- Older fonts did not support complex scripts
- Newer font technologies such as OpenType contain rules specifying what glyphs to display for character sequences.
- Worked with Font Developers to introduce them to the new technologies

Operating System Support

- Windows 95, 98 etc. do not support Unicode
- Windows 2000 supports Unicode but not complex scripts
- Windows XP supports Tamil, etc. but not Sinhala
- Microsoft has introduced support for Sinhala, but not yet officially
- Linux uses Pango for complex Scripts
 - Version of Pango with Sinhala support is available

Types of Sinhala keyboards

- Wijesekera keyboard
 - used with both typewriters and computers
- "Phonetic" keyboards
 - key assignment is based on the English key layout.
- Transliteration schemes
 - text is typed as a sequence of English letters.
- Consonant-vowel sequence keyboards
 - consonant typed first, followed by vowel modifier

Standard Keyboard

- Need of a Standard keyboard
 - Manufacturers can produce pre-printed keyboards
 - Students can learn typing
 - Users can move from one computer to another
- Wijesekera keyboard may not be optimum
 - but no other Standard was available
- Decided to use Wijesekera keyboard with some modifications

Keyboard Design Principles

- Common letters in same places as typewriter keyboard.
- Number keys same as in US-ASCII keyboard.
- Only one form of the al-lakuna and each pilla
- No "half letters" on the keyboard
 - Bandi akuru constructed by pressing a join key between the two consonants.
- Use same sequence in typing as in writing;

Other Keyboards

- Standardise a "phonetic" input method
- Design an "optimised" Sinhala keyboard

Conclusion

- Our Objective:
 - using computers, and other devices such as mobile phones, in Sinhala should be as convenient and obvious as in English
- Our work in standardisation of encoding and keyboards is only a first step
- Next step is to disseminate use of Sinhala throughout the country
- A parallel effort in Tamil

Acknowlegements

members of

- the CINTEC Sinhala Fonts Committee
- the ICTA Language Requirements Working Group
- the SLSI Sinhala Working Group
- Font Developers, Lake House, Microsoft
- all others who provided assistance